Modified Algorithm on Maximum Detected Bit Flipping Decoding for High Dimensional Parity-Check Code

Author(s)
Funahashi, Yuki; Usami, Shogo; Takumi, Ichi; Hata, Masayasu

Citation
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E89-A(10): 2670-2675

Issue Date
2006-10-01

URL
http://repo.lib.nitech.ac.jp/handle/123456789/7223

Rights
Copyright(c)2006 IEICE http://search.ieice.org/index.html

Type
Journal Article

Textversion
publisher

・名古屋工業大学学術機関リポジトリは、名古屋工業大学内で生産された学術情報を電子的に収集・保存・発信するシステムです。
・論文の著作権は、著者または出版社が保持しています。著作権法で定める権利制限規定を超える利用については、著作権者に許諾を得てください。
・タイトルに「Author」と記載された論文は、著者原稿となります。実際の出版社版とは、レイアウト、字句校正レベルの異同がある場合もあります。
Modified Algorithm on Maximum Detected Bit Flipping Decoding for High Dimensional Parity-Check Code

Yuuki FUNAHASHIa, Student Member, Shogo USAMI†, Ichi TAKUMII††, Members, and Masayasu HATA†††, Fellow

SUMMARY We have researched high dimensional parity-check (HDPC) codes that give good performance over a channel that has a very high error rate. HDPC code has a little coding overhead because of its simple structure. It has hard-in, maximum detected bit flipping (MDBF) decoding that has reasonable decoding performance and computational cost. In this paper, we propose a modified algorithm for MDBF decoding and compare the proposed MDBF decoding with conventional hard-in decoding.

key words: error correcting code, high dimensional parity-check code, hard-in decoding

1. Introduction

In recent years, low-density parity-check (LDPC) codes [1]–[3], that are made from sparse graphs, have attracted much attention in coding theory and can achieve near Shannon limit performance [2]. We have researched high dimensional parity-check codes (HDPC) [4] that give good performance for channels over a very high error rate. HDPC code is constructed using a combination of single parity-check codes, and it is easy to implement the code, as well as the EG-LDPC code [5], [6], on hardware because of the simple structures. It can be said that HDPC code is subset of LDPC code. It is useful to consider a specific decoding algorithm for the structure of HDPC code.

HDPC code can use hard-in decoding to take advantage of its simple structure. Maximum detected bit flipping (MDBF) decoding is known as a hard-in decoding method for HDPC codes with reasonable decoding performance and computational cost. In this paper, we propose a modified algorithm based on MDBF decoding to both improve decoding performance and reduce computational costs. Then we perform a computer simulation to compare the proposed method with original MDBF decoding methods. Moreover we also perform bit flipping (BF) [1] decoding, which is used in hard-in decoding for Gallager's LDPC to compare them.

2. High Dimensional Parity-Check Code

2.1 Property of Code

HDPC code has low-density parity-check matrix, so HDPC code is a subset of LDPC code [1], [3]. Mackay shows the condition of a good LDPC code [2] as follows:

1. Parity-check matrix \(H \) generated by starting from an all-zero matrix and randomly flipping not necessarily distinct bits in each column.
2. Add to above condition, matrix \(H \) generated by randomly creating weight columns.
3. Add to above conditions, matrix \(H \) generated with weight per column and (as near as possible) uniform weight per row.
4. Add to above conditions, matrix \(H \) generated with weight per column and uniform weight per row, and no two columns having overlap greater than 1.
5. Add to above conditions, matrix \(H \) further constrained so that its bipartite graph has large girth.

HDPC code has good error correcting capability, since the code has parity-check matrix that is satisfied by 4th condition. For example, 3Dm2 code has the following:

\[
H = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]
Then, the Tanner graph in Fig. 1 shows parity-check matrix of 3Dm2 HDPC code.

3. Conventional Hard-in Decoding Methods for HDPC

In this section, the conventional hard-in decoding methods of adaptive threshold (AT) decoding, MDBF decoding, and BF decoding are shown.

In this paper, when codeword length is N and length of parity is M, let X = (x₁, x₂, ..., xₙ) be transmitted codeword and Y = (y₁, y₂, ..., yₙ) be the corresponding received sequence over binary symmetric channel (BSC). Y becomes into D = (d₁, d₂, ..., dₙ) through decoding process as one of follows:

- D = X (Correct decoding).
- D becomes not any codeword (Error detect).
- D becomes any other codeword except X (Erroneous decoding).

Word error rate is defined as the sum of the error detect rate and erroneous decoding rate. Dᵢ = (dᵢ₁, dᵢ₂, ..., dᵢₙ) represents the temporary decoded codeword in the decoding process of i-th iteration, Bᵢ = (bᵢ₁, bᵢ₂, ..., bᵢₙ) represents flip bits set of i-th iterations, I_max represents maximum number probability of iterations.

3.1 AT Decoding

1. D₀ ← Y, i ← 0.
2. Dᵢ is checked by parity-check lines.
3. If all parity-check lines in Dᵢ is correct, then D ← Dᵢ and finish decoding.
4. Eᵢ is counted number over parity check lines which detects error and includes j-th bit.
5. If Eᵢ is greater than threshold Thᵢ, then Bᵢ ← 1, else Bᵢ ← 0.
6. Dᵢ₊₁ ← XOR(Dᵢ, Bᵢ).
7. If i < I_max, then i ← i + 1 and go to 2, else D ← Dᵢ and detect an error.

3.2 MDBF Decoding

1. D₀ ← Y, i ← 0.
2. Dᵢ is checked by parity-check lines.
3. If all parity-check lines in Dᵢ is correct, then D ← Dᵢ and finish decoding.
4. Each bit is counted number over belonging parity check lines which detects error.
5. If Eᵢ = maxₖ Eᵢₖ, then Bᵢ ← 1, else Bᵢ ← 0.
6. Dᵢ₊₁ ← XOR(Dᵢ, Bᵢ).
7. If i < I_max, then i ← i + 1 and go to 2, else D ← Dᵢ and detect an error.

3.3 BF Decoding [1], [6]

Gallager proposed BF decoding for reasonable hard-in decoding for LDPC codes. H represents N × M parity-check matrix. Let S = (s₁, s₂, ..., sₘ) be the syndrome of Dᵢ:

\[s_j = \sum_{h=1}^{N} d_{ih} \cdot H_{jh} \pmod{2} \] \hspace{1cm} (2)

If Dᵢ is a codeword, S will be 0. BF decoding algorithm following.

1. D₀ ← Y, i ← 0.
2. S is evaluated by Eq. (3).
3. If S = 0, then D ← Dᵢ and finish decoding.
4. Eᵢ ← \sum_{h=1}^{M} s_h \cdot H_{jh} = 1.
5. Eᵢ is greater than threshold, then Bᵢ ← 1, else Bᵢ ← 0.
6. Dᵢ₊₁ ← XOR(Dᵢ, Bᵢ).
7. If i < I_max, then i ← i + 1 and go to 2, else D ← Dᵢ and detect an error.

3.4 Comparison

MDBF decoding is an improvement on AT decoding. AT decoding is a problem because the threshold of each turn Tₘ cannot be determined by systematic means. There is no problem decoding threshold in MDBF decoding since the threshold is determined as the maximum Eᵢ. In a fixed threshold situation, when Tₘ is constant in the decoding process, decoding performance of BF decoding is equivalent to that of AT decoding. However, AT decoding is specific to HDPC code at least in the viewpoint of computational cost.

4. Modified Algorithm on Maximum Detected Bit Flipping Decoding

We propose a modified algorithm based on MDBF decoding for both improving performance and reducing computational cost.

In this section, Hamming distance A, B is denoted as d_H(A, B).

4.1 Modification to Improve Performance

4.1.1 Decoding Radius

Whatever d_H(Dᵢ, Y) is, the decoding process in the con-
ventional method continues. Therefore, the decoding result might have less likelihood from received word. We propose to bound $d_H(D_i, Y)$. When $d_H(D_{i+1}, Y)$ is greater than decoding radius r, the flip bit set B_i is limited by approaching Y in that round. In the algorithm the following process Step A. is added to the process after Step 4.:

A. If $d_H(\text{XOR}(D_i, B_i), Y) > r$,
 $B_i \leftarrow \text{AND}(B_i, \text{XOR}(D_i, Y))$.

4.1.2 Bound Distance Check

The farther distance $d_H(D, Y)$ is, the higher likelihood of Er- roneous decoding there is. We propose to bound $d_H(D, Y)$. When $d_H(D, Y)$ is greater than threshold of bound distance t, then decoding results in Error detect. In the following process Step B. is added to the algorithm after Step 7.:

B. If $d_H(D, Y) > t$, then detect an error.

4.2 Modification to Reduce Computational Cost

There is a never-ending case of decoding in an infinite iteration, because of loop in the decoding state. It is the simulation where a temporary decoded codeword in the decoding process of $(i + 1)$-th iteration is equal to the temporary decoded codeword in decoding process of $(i - 1)$-th iteration. So, we propose to stop decoding if the loop is detected. In the following process Step C. is added to the algorithm after Step 6.:

C. If $D_{i+1} = D_{i-1}$, then stop decoding and detect an error.

Similarly, a decoding process may not be finished if $D_{i+1} = D_{i-j}$ $(j = 2, 3, \ldots)$, but these situations hardly occur.

5. Research on Modified Algorithm

The parameters of r and t play an important role in the improvement of the decoding performance. We compute decoding performance for 3 dimensional HDPC codes which are different sizes of 3Dm3, 3Dm5, 3Dm10 transmitted over a BSC on computer simulation using various r and t.

First, Fig. 2 shows correct rate gain from the original MDBF decoding to the proposed using decoding radius 9, 10 and 11 of 3Dm3 with respect to crossover probability. When r is 10, the code has the most gain. Figures 3, 4 show correct rate gain using decoding radius 13, 15, 17, 19 and 21 of 3Dm5 and 20, 22, 24, 26 and 28 of 3Dm10 with respect to crossover probability, respectively. When r is 17, 26, the code has the most gain, respectively.

Second, Fig. 5 shows correct rate gain and erroneous rate gain using bound distance 7, 8 and 9 decoding radius 10 of 3Dm3 with respect to crossover probability.

When t is 7, erroneous rate gain is so large, but correct rate gain is too large to use in decoding. When t is 9, correct rate gain is small, but erroneous rate gain is also small. Therefore bound distance $t = 8$ is the most desirable for 3Dm3 code.

Figures 6, 7 show gain to change t of 3Dm5 and 3Dm10 with respect to crossover probability for MDBF decoding, respectively. When t is 15, 22, the code has most gain, respectively.
6. Comparison with Conventional Decoding Methods

In this section, we compare proposed MDBF decoding with original MDBF decoding. We compute 3 dimensional HDPC codes which are different size of 3Dm₃, 3Dm₅, 3Dm₁₀ transmitted over a BSC on computer simulation. And, we use decoding radius r and bound distance t in these simulations, which are optimum values of word error rate in pilot simulation. Moreover, we compare HDPC codes with Gallager’s LDPC codes with nearly transmitted rate and codeword length. Gallager’s LDPC codes satisfy Gallager’s design [1], [7].

According to Mackay [2], [7], Regular-LDPC code which column weight is 3 have good decoding performance for sum-product decoding. \((n, w_c, w_r)\) Gallager’s LDPC code means codeword length n, column weight \(w_c\) and row weight \(w_r\). The threshold of BF decoding on HDPC code and LDPC code is fixed to 3 in our simulation, because of higher decoding performance than at a fixed threshold of 2.

6.1 Decoding Performance

First, decoding performance are shown. Figure 8 shows word error rate with respect to crossover probability on 3Dm₃ HDPC code and (28,3,4) LDPC code for MDBF decoding and BF decoding. The HDPC code for original MDBF decoding, HDPC code for proposed MDBF decoding with \(r = 10\) and \(t = 8\). Is shown in Fig.8 HDPC code for BF decoding, and LDPC code for BF decoding. LDPC code for MDBF decoding always has superior performance than BF decoding. Figures 9, 10 show word error rate
with respect to crossover probability on 3Dm5 and 3Dm10 HDPC code, respectively and (126,3,6) and (1001,3,11) LDPC code, respectively. In Figs. 9, 10 proposed MDBF decoding simulated with the parameters $r = 17$, $t = 15$ and $r = 26$, $t = 22$, respectively. According to Figs. 8, 9, 10 it seems the HDPC code for the proposed MDBF decoding has the best performance in all ranges. The longer the codeword length becomes, the closer the performance of the LDPC code for MDBF decoding approaches the HDPC code. We can reduce the word error rate by virtue of process Step A.

Second, the performance improvement from the original MDBF decoding is shown. Figures 11, 12, 13 show block erroneous rate and word error rate with respect to crossover probability of original and proposed MDBF decoding on 3Dm3, 3Dm5 and 3Dm10, respectively. In Figs. 11, 12, 13, it seems that both the word error rate and block erroneous rate of proposed method are decreased from the original method. Therefore, we can say the proposed method is superior to the original method. We can reduce the block erroneous rate by virtue of process Step B.

6.2 Computational Cost

Table 1 shows the average number probability of bit operations per iteration. Proposed methods have less computational costs than original methods. Cost reduction from

![Fig. 10](image1.png)
Fig. 10 Word error rate of 3Dm10 code and (1001,3,11) code with respect to crossover probability.

![Fig. 11](image2.png)
Fig. 11 Block erroneous rate and word error rate of 3Dm3 code with respect to crossover probability.

![Fig. 12](image3.png)
Fig. 12 Block erroneous rate and word error rate of 3Dm5 code with respect to crossover probability.

![Fig. 13](image4.png)
Fig. 13 Block erroneous rate and word error rate of 3Dm10 code with respect to crossover probability.

<table>
<thead>
<tr>
<th></th>
<th>I_{\max}</th>
<th>average number of achieving I_{\max}</th>
<th>average number of bit operations per iteration</th>
<th>mean times of iteration</th>
<th>average bit operations</th>
<th>cost rate on proposal / original</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Dm3</td>
<td>original</td>
<td>20</td>
<td>0.107</td>
<td>298.8</td>
<td>4.722</td>
<td>1411</td>
</tr>
<tr>
<td></td>
<td>proposal</td>
<td>20</td>
<td>0.004</td>
<td>368.0</td>
<td>5.024</td>
<td>1112</td>
</tr>
<tr>
<td>3Dm5</td>
<td>original</td>
<td>20</td>
<td>0.141</td>
<td>1334</td>
<td>5.943</td>
<td>7928</td>
</tr>
<tr>
<td></td>
<td>proposal</td>
<td>20</td>
<td>0.012</td>
<td>1724</td>
<td>5.876</td>
<td>6684</td>
</tr>
<tr>
<td>3Dm10</td>
<td>original</td>
<td>100</td>
<td>0.184</td>
<td>10390</td>
<td>6.547</td>
<td>68000</td>
</tr>
<tr>
<td></td>
<td>proposal</td>
<td>100</td>
<td>0.058</td>
<td>13180</td>
<td>5.844</td>
<td>50680</td>
</tr>
</tbody>
</table>
original to proposed methods is 15% to 25%. In general, there is trade-off between decoding performance and computational cost. But, the proposed method improves both decoding performance and computational cost. According to Table 1, the success of reducing the averages is attributable to process Step C.

7. Conclusion

In this paper, we proposed a modified algorithm for MDBF decoding that improves both decoding performance and computational cost. We introduced two parameters, decoding radius \(r \) and bound distance \(t \), to increase correct decoding and reduce erroneous decoding. Moreover, decoding cost reduction was successful by stopping the decoding when a loop state was detected. When codeword length is less than about 1000, 3 dimensional HDPC codes show better decoding performance than Gallager’s LDPC codes.

In future works, we hope to propose a method to find the optimum parameters relating to codeword length, transmission rate and channel environment using this systematic method.

References